氧化磷酸化
A+医学百科 >> 氧化磷酸化 |
目录 |
一、氧化磷酸化的概念和偶联部位
1.概念:氧化磷酸化(oxidative phosphorylation)是指在生物氧化中伴随着ATP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。
2.偶联部位:根据实验测定氧的消耗量与ATP的生成数之间的关系以及计算氧化还原反应中ΔGO'和电极电位差ΔE的关系可以证明。
P/O比值是指代谢物氧化时每消耗1摩尔氧原子所消耗的无机磷原子的摩尔数,即合成ATP的摩尔数。实验表明, NADH在呼吸链被氧化为水时的P/O值约等于2.5,即生成2.5分子ATP;FADH2氧化的P/O值约等于1.5,即生成1.5分子ATP。
氧-还电势沿呼吸链的变化是每一步自由能变化的量度。根据ΔGO'= - nFΔE O'(n是电子传递数,F是法拉第常数),从NADH到Q段电位差约0.36V,从Q到Cytc为0.21V,从aa3到分子氧为0.53V,计算出相应的ΔGO'分别为69.5、40.5、102.3kJ/mol。于是普遍认为下述3个部位就是电子传递链中产生ATP的部位。
NADH→NADH脱氢酶→‖Q → 细胞色素bc1复合体→‖Cytc →aa3→‖O2
二、胞液中NADH的氧化
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。
(一)α-磷酸甘油穿梭作用
这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。
胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。
主要存在肝和心肌中。1摩尔G→38摩尔ATP
胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。
三、氧化磷酸化偶联机制
(一)化学渗透假说(chemiosmotic hypothesis)
1961年,英国学者Peter Mitchell提出化学渗透假说(1978年获诺贝尔化学奖),说明了电子传递释出的能量用于形成一种跨线粒体内膜的质子梯度(H+梯度),这种梯度驱动ATP的合成。这一过程概括如下:
1.NADH的氧化,其电子沿呼吸链的传递,造成H+ 被3个H+ 泵,即NADH脱氢酶、细胞色素bc1复合体和细胞色素氧化酶从线粒体基质跨过内膜泵入膜间隙。
2.H+ 泵出,在膜间隙产生一高的H+ 浓度,这不仅使膜外侧的pH较内侧低(形成pH梯度),而且使原有的外正内负的跨膜电位增高,由此形成的电化学质子梯度成为质子动力,是H+ 的化学梯度和膜电势的总和。
3.H+ 通过ATP合酶流回到线粒体基质,质子动力驱动ATP合酶合成ATP。
(二)ATP合酶
ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。
四、影响氧化磷酸化的因素
(一)抑制剂
能阻断呼吸链某一部位电子传递的物质称为呼吸链抑制剂。
鱼藤酮、安密妥在NADH脱氢酶处抑制电子传递,阻断NADH的氧化,但FADH2的氧化仍然能进行。
抗霉素A抑制电子在细胞色素bc1复合体处的传递。
对电子传递及ADP磷酸化均有抑制作用的物质称氧化磷酸化抑制剂,如寡霉素。
(二)解偶联剂
2,4-二硝基苯酚(DNP)和颉氨霉素可解除氧化和磷酸化的偶联过程,使电子传递照常进行而不生成ATP。DNP的作用机制是作为H+的载体将其运回线粒体内部,破坏质子梯度的形成。由电子传递产生的能量以热被释出。
(三)ADP的调节作用
正常机体氧化磷酸化的速率主要受ADP水平的调节,只有ADP被磷酸化形成ATP,电子才通过呼吸链流向氧。如果提供ADP,随着ADP的浓度下降,电子传递进行,ATP在合成,但电子传递随ADP浓度的下降而减缓。此过程称为呼吸控制,这保证电子流只在需要ATP合成时发生。
|
|
关于“氧化磷酸化”的留言: | 订阅讨论RSS |
目前暂无留言 | |
添加留言 |