激光
A+医学百科 >> 激光 |
激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。意思是"通过受激发射光扩大"。激光的英文全名已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。
目录 |
简介
激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的亮度为太阳光的100亿倍。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。该项目在华中科技大学武汉光电国家实验室和武汉东湖中国光谷得到充分体现,也在军事上起到重大作用。
激光产生
一.物质与光相互作用的规律
光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。
微观粒子都具有特定的一套能级(通常这些能级是分的)。任一时刻粒子只能处在与某一能级相对应的
状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。
1. 受激吸收(简称吸收)
处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。
2. 自发辐射
粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。
3. 受激辐射、激光
1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。
可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。
.粒子数反转
爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。
当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。
理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。
若原子或分子等微观粒子具有高能级E2和低能级E1,E2和E1能级上的布居数密度为N2和N1,在两能级间存在着自发发射跃迁、受激发射跃迁和受激吸收跃迁等三种过程。受激发射跃迁所产生的受激发射光,与入射光具有相同的频率、相位、传播方向和偏振方向。因此,大量粒子在同一相干辐射场激发下产生的受激发射光是相干的。受激发射跃迁几率和受激吸收跃迁几率均正比于入射辐射场的单色能量密度。当两个能级的统计权重相等时,两种过程的几率相等。在热平衡情况下N2<N1,所以自发吸收跃迁占优势,光通过物质时通常因受激吸收而衰减。外界能量的激励可以破坏热平衡而使N2>N1,这种状态称为粒子数反转状态。在这种情况下,受激发射跃迁占优势。光通过一段长为l的处于粒子数反转状态的激光工作物质(激活物质)后,光强增大eGl倍。G为正比于(N2-N1)的系数,称为增益系数,其大小还与激光工作物质的性质和光波频率有关。一段激活物质就是一个激光放大器。
如果,把一段激活物质放在两个互相平行的反射镜(其中至少有一个是部分透射的)构成的光学谐振腔中(图1),处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外:轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增长。如果谐振腔内单程小信号增益G0l大于单程损耗δ(G0l是小信号增益系数),则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子(所谓自发辐射)。同样的,当一个光子入射到一个能级系统并为之吸收的话,会导致原子从低能级向高能级跃迁(所谓受激吸收);然后,部分跃迁到高能级的原子又会跃迁到低能级并释放出光子(所谓受激辐射)。这些运动不是孤立的,而往往是同时进行的。当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,那么总体而言,就会有光子射出,从而产生激光。
激光的特点
(一)定向发光
普通光源是向四面八方发光。要让发射的光朝一个向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。
(二)亮度极高
在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。
(三)颜色极纯
光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在0.76微米至0.4微米间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氖灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氖灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。
激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10^-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。
此外,激光还有其它特点:相干性好。激光的频率、振动方向、相位高度一致,使激光光波在空间重叠时,重叠区的光强分布会出现稳定的强弱相间现象。这种现象叫做光的干涉,所以激光是相干光。而普通光源发出的光,其频率、振动方向、相位不一致,称为非相干光。
闪光时间可以极短。由于技术上的原因,普通光源的闪光时间不可能很短,照相用的闪光灯,闪光时间是千分之一秒左右。脉冲激光的闪光时间很短,可达到6飞秒(1飞秒等于1000万亿分之一秒)。闪光时间极短的光源在生产、科研和军事方面都有重要的用途。
(四)能量密度极大
光子的能量是用E=hf来计算的,其中h为普朗克常量,f为频率。由此可知,频率越高,能量越高。激光频率范围3.846*10^(14)Hz到7.89510(14)Hz.电磁波谱可大致分为:(1)无线电波——波长从几千米到0.3米左右,一般的电视和无线电广播的波段就是用这种波;(2)微波——波长从0.3米到10^-3米,这些波多用在雷达或其它通讯系统;(3)红外线——波长从10^-3米到7.8×107米;(4)可见光——这是人们所能感光的极狭窄的一个波段。波长从780—380nm。光是原子或分子内的电子运动状态改变时所发出的电磁波。由于它是我们能够直接感受而察觉的电磁波极少的那一部分;(5)紫外线——波长从3 ×10^-7米到6×10^-10米。这些波产生的原因和光波类似,常常在放电时发出。由于它的能量和一般化学反应所牵涉的能量大小相当,因此紫外光的化学效应最强;(6)伦琴射线—— 这部分电磁波谱,波长从2×10^-9米到6×10^-12米。伦琴射线(X射线)是电原子的内层电子由一个能态跳至另一个能态时或电子在原子核电场内减速时所发出的;(7)γ射线——是波长从10^-10~10^-14米的电磁波。这种不可见的电磁波是从原子核内发出来的,放射性物质或原子核反应中常有这种辐射伴随着发出。γ射线的穿透力很强,对生物的破坏力很大。由此看来,激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。
受激辐射
什么叫做“受激辐射”?它基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性。
目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微雕、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。
经过30多年的发展,激光现在几乎是无处不在,它已经被用在生活、科研的方方面面:激光针灸、激光裁剪、激光切割、激光焊接、激光淬火、激光唱片、激光测距仪、激光陀螺仪、激光铅直仪、激光手术刀、激光炸弹、激光雷达、激光枪、激光炮……,在不久的将来,激光肯定会有更广泛的应用。
激光的其它特性
激光有很多特性:首先,激光是单色的,或者说是单频的。有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的。其次,激光是相干光。相干光的特征是其所有的光波都是同步的,整束光就好像一个“波列”。再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象。
激光(LASER)是上世纪60年代发明的一种光源。LASER是英文的“受激放射光放大”的首字母缩写。激光器有很多种,尺寸大至几个足球场,小至一粒稻谷或盐粒。气体激光器有氦-氖激光器和氩激光器;固体激光器有红宝石激光器;半导体激光器有激光二极管,像CD机、DVD机和CD-ROM里的那些。每一种激光器都有自己独特的产生激光的方法。
激光技术应用
激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:
1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。
2.激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。
激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。
激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。
激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。
激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w提高到了800w至1000w。国内目前比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。目前使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器。
激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。目前使用的激光器多以YAG激光器,CO2激光器为主。
激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成。多用于模具和模型行业。目前使用的激光器多以YAG激光器、CO2激光器为主。
激光涂敷:在航空航天、模具及机电行业应用广泛。目前使用的激光器多以大功率YAG激光器、CO2激光器为主。
美国得克萨斯州大学的科学家研制出世界上功率最强大的可操作激光,这种激光每万亿分之一秒产生的能量是美国所有发电厂发电量的2000倍,输出功率超过1 皮瓦——相当于10的15次方瓦。这种激光第一次启动是在1996年。马丁尼兹说,希望他的项目能够在2008年打破这一纪录,也就是说,让激光的功率达到1.3皮瓦到1.5皮瓦之间。超级激光项目负责人麦卡尔.马丁尼兹表示:“我们可以让材料进入一种极端状态,这种状态在地球上是看不到的。我们打算在德州观察的现象相当于进入太空观察一颗正在爆炸的恒星。”
激光“抓住”碳纳米管并使之移动
最近,科学家开发出用激光“抓住”碳纳米管并使之移动的新技术。这种技术可以为芯片制造工程师提供一种把纳米元件移动到预定位置的新方法,从而制造出以纳米管为基础的微型芯片。
直径只有几纳米、长约100纳米的碳纳米管具有半导体性能,这意味着碳纳米管可能在某天成为低功率超快速计算机芯片的基础。迄今,安装碳纳米管的惟一方法是利用一种名为原子力显微镜的昂贵设备,设法推动纳米管至预定位置,然而这种方法操纵起来十分费事。
为了改变这种状况,美国伊利诺伊州纽约大学的科学家和一家光学公司的科研人员试验了一种名为“光学捕获”的技术,试图更便利地操纵碳纳米管。光学捕获技术就是利用激光能捕获微小粒子的能力,在移动激光束时使微小粒子跟随激光移动。由于激光能捕获微小粒子,因此在它移动时就会像镊子一样,“夹”着微小粒子移动。科学家把这种现象称为“激光镊子”。现在生物学家已能用激光镊子夹住单个细胞。例如,从血液中分离出单个血红细胞用于研究镰刀状血红细胞贫血症或疟疾治疗研究。激光镊子能“夹”住微小粒子,是因为激光束中心强度大于边缘强度,因此当激光束照射一个小粒子时,从中心折射的光线要比向前的光线多。
当折射的光线获得向外的冲力时,粒子上的反作用力就使冲力指向激光束中心,因此粒子总是被吸引到激光束中心。如果粒子非常小且具有很小的重力或摩擦力,当激光束移动时,粒子就会跟着移动。
然而,激光镊子移动的血细胞直径有几微米,但现在要移动直径仅2~20纳米的碳纳米管会麻烦得多。因此想利用单个激光镊子移动大量碳纳米管到一定位置,可能会与用原子力显微镜一样费事。
为此,科学家用一种液晶激光分离器把激光束分成200个可单独控制的小激光束,研究人员可以控制这些激光束使之形成三角形、四边形、五边形和六边形等形状,从而移动大量的纳米管群,使它们在显微镜载片表面定位,达到移动碳纳米管的目的。
光学捕捉技术的成功,受到美国加利福尼亚大学的纳米管专家、物理学家亚历克斯.泽特尔的称赞,他说,因为目前还没有一种可靠的技术能操纵大量的纳米管,而这种新的光学捕获技术有可能应用于工业。
激光在医学中的应用
激光在医学上的应用主要分类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。
应用于牙科的激光系统依据激光在牙科应用的不同作用,分为几种不同的激光系统。区别激光的重要特征之一是:光的波长,不同波长的激光对组织的作用不同,在可见光及近红外光谱范围的光线,吸光性低,穿透性强,可以穿透到牙体组织较深的部位,例如氩离子激光、二极管激光或Nd:YAG激光(如图1)。而Er:YAG激光和CO,激光的光线穿透性差,仅能穿透牙体组织约0.01毫米。区别激光的重要特征之二是:激光的强度(即功率),如在诊断学中应用的二极管激光,其强度仅为几个毫瓦特,它有时也可用在激
光显示器上。
用于治疗的激光,通常是几个瓦特中等强度的激光。激光对组织的作用,还取决于激光脉冲的发射方式,以典型的连续脉冲发射方式的激光有:氩离子激光、二极管激光、CO2,激光;以短脉冲方式发射的激光有:Er:YAG激光或许多Nd:YAG激光,短脉冲式的激光的强度(即功率)可以达到1,000瓦特或更高,这些强度高、吸光性也高的激光,只适用于清除硬组织。
激光在龋齿的诊断方面的应用
1.脱矿、浅龋
2.隐匿龋
激光在治疗方面的应用
1.切割
激光在工业上的应用
激光在工业上,也应用极为广泛,因为激光在激光束聚焦在材料表面的时候能够使材料熔化,使激光束与材料沿一定轨迹作相对运动,从而形成一定形状的切缝。七十年代后,为了改善和提高火焰切割的切口质量,又推广了氧乙烷精密火焰切割和等离子切割。在工业生产中有一定的适用范围。
激光美容
(1)激光在美容界的用途越来越广泛。激光是通过产生高能量,聚焦精确,具有一定穿透力的单色光,作用于人体组织而在局部产生高热量从而达到去除或破坏目标组织的目的,各种不同波长的脉冲激光可治疗各种血管性皮肤病及色素沉着,如太田痣、鲜红斑痣、雀斑、老年斑、毛细血管扩张等,以及去纹身、洗眼线、洗眉、治疗瘢痕等;而近年来一些新型的激光仪,高能超脉冲CO2激光,铒激光进行除皱、磨皮换肤、治疗打鼾,美白牙齿等等,取得了良好的疗效,为激光外科开辟越来越广阔的领域。
(2)激光手术有传统手术无法比拟的优越性。首先激光手术不需要住院治疗,手术切口小,术中不出血,创伤轻,无瘢痕。例如:眼袋的治疗传统手术法存在着由于剥离范围广、术中出血多,术后愈合慢,易形成瘢痕等缺点,而应用高能超脉冲CO2激光仪治疗眼袋,则以它术中不出血,不需缝合,不影响正常工作,手术部位水肿轻,恢复快,无瘢痕等优点,令传统手术无法比拟。而一些由于出血多而无法进行的内窥镜手术,则可由激光切割代替完成。(注:有一定的适应范围)
(3)激光在血管性皮肤病以及色素沉着的治疗中成效卓越。使用脉冲染料激光治疗鲜红斑痣,疗效显著,对周围组织损伤小,几乎不落疤。它的出现,成为鲜红斑痣治疗史上的一次革命,因为鲜红斑痣治疗史上,放射、冷冻、电灼、手术等方法,其瘢痕发生率均高,并常出现色素脱失或沉着。激光治疗血管性皮肤病是利用含氧血红蛋白对一定波长的激光选择性的吸收,而导致血管组织的高度破坏,其具有高度精确性与安全性,不会影响周围邻近组织。因此,激光治疗毛细血管扩张也是疗效显著。
此外,由于可变脉冲激光等相继问世,使得不满意纹身的去除,以及各类色素性皮肤病如太田痣,老年斑等的治疗得到了重大突破。这类激光根据选择性光热效应理论,(即不同波长的激光可选择性地作用于不同颜色的皮肤损害),利用其强大的瞬间功率,高度集中的辐射能量及色素选择性,极短的脉宽,使激光能量集中作用于色素颗粒、将其直接汽化、击碎,通过淋巴组织排出体外,而不影响周围正常组织,并且以其疗效确切,安全可靠,无瘢痕,痛苦小而深入人心。
(4)激光外科开创了医学美容的新纪元。高能超脉冲CO2激光磨皮换肤术开拓了美容外科的新技术。它利用高能量,极短脉冲的激光,使老化、损伤的皮肤组织瞬间被汽化,不伤及周围组织,治疗过程中几乎不出血,并可精确的控制作用深度。其效果得到国际医学整形美容界充分肯定,被誉为“开创了医学美容新纪元”;此外,更有高能超脉冲CO2激光仪治疗眼袋、打鼾、甚至激光美白牙齿等,以其安全精确的疗效,简便快捷的治疗在医学美容界创造了一个又一个奇迹。激光美容使得医学美容向前迈进了一大步,并且赋予医学美容更新的内涵。
【激光洗血】
世界卫生组织(WHO)近期报告:全世界每年有1500万人死于冠心病、高血压、脑血栓等心脑血管疾病,而60岁以上的老年人死于心脑血管病的人数90%以上。
心脑血管疾病被称为人们生命与健康的三大杀手之一,而由高血脂和高血黏度引起的心脑血管疾病更是“三大杀手”之首,仅有明显症状的心脑血管疾病患者比如头痛、头晕、耳鸣、失眠、四肢麻木、记忆力减退等有1.8亿人,高血压1.2亿人,高血脂人群更加庞大,有近四亿人,心脑血管发病人群更以每年600万人的速度增加。
心脑血管疾病具有发病率高、死亡率高、致残率高、复发率高、治疗费用高以及并发症多“五高一多”的特点,治疗和预防已到了刻不容缓的地步。
上个世纪四十年代,人类发现了激光,这种神奇的光,是物质由受激而辐射出放大的光波,称为激光,光是由一个个光子组成,每一个光子都含有一定的能量,所以又把光子叫做光量子。激光也是由一个个光量子组成的。医学上用激光照射血液,光量子被血液分子吸收并转化为分子内能,从而起到激活血液细胞的作用,光量子还能对血液产生其他光化合反应和生物效应,应用这些效应来治疗和保健的疗法被称为光量子血疗(又称激光洗血)。
低强度激光疗法:桡动脉照射治疗,见效快,疗效显著,可产生以下效果:
1、改变血流变指标
改善血液流变性质,可以降低血压,降低全血黏度、血浆黏度、血小板聚集能力,激活酶系统,加快新陈代谢。
2、改善血液循环
刺激交感神经和副交感神经,可使黏膜和鼻黏膜血管收缩、扩张,从而反射性地引起颅内血液循环和全身血液循环。可出现全身症状的改善,如精神好转全身乏力减轻食欲增加。
3、恢复红细胞正常形态
补充红细胞的生物能量,剥离红细胞表面的脂肪层,使红细胞表面恢复负电荷,加大红细胞间的排斥力,使红细胞单个游离,避免细胞粘连。
4、提高红细胞携氧能力
由于光量子补充红细胞的生物能量,使红细胞能与氧气更好地结合发挥其携氧和输送氧气的功能,保证了肌体组织供氧。
5、增加血红细胞SOD含量
在SOD(超氧化物歧化酶)含量测定时发现,用低强度激光治疗后红细胞内SOD含量增加,同时能清除血液中的自由基和垃圾。
6、调节免疫
激活白细胞,提高其吞噬活性和趋化性,促使肌体的物质代谢和能量代谢,有利于受损组织的修复和再生,因而具有调节肌体免疫作用。
7、激活脑细胞
低强度激光桡动脉照射,使脑部血流灌注增加,提高脑细胞功能,彻底改善脑部微循环。
8、软化血管
低强度激光照射血液疗法能保护血管内皮细胞,增强或恢复血管的弹性,减少低密度脂蛋白,纠正酸血症,软化血管。预防血栓形成。
9、通过临床证明:桡动脉照射治疗疗效显著。
激光治疗发展历程:
第一代激光即抽取部分人体血液采用低强度激光照射后再输回人体内,“称激光照血回输法”
第二代激光即医院采用的三类器械激光血管内照射存在着有创伤,一般人无法独立操作,费用极其昂贵。
第三代激光即体外激光血管照射洗血疗法,经十多年的临床验证,已经发展成为一项被国际医学界公认的高效、安全、经济的成熟技术。
而体外照射疗法因无创伤、无痛苦、无副作用、无交叉感染的危险被患者称为“绿色疗法”。
基于这种原因在上述疗法的基础上,科研人员及医学专家经过多次反复临床试验,终于研制开发出安全、方便,激光心脑血管冶疗仪。
低强度激光疗法适用范围:
(1) 适用于因“高血脂、高血压、高血黏度”引发的各种疾病。如动脉硬化、脑血栓、
脑梗塞、高血压、冠心病、心绞痛、心肌梗塞、肺心病、糖尿病、脂肪肝、神经衰弱、鼻炎等。
(2) 对因血黏度增高引起的亚健康状态,如头痛、头晕、胸闷、失眠、耳鸣、乏力等症状有较好的辅助治疗作用,也可供心脑疾病的预防和康复作用。
主要性能指标:
激光波长:650nm(最容易被人体吸收)
低强度激光器输出功率:1—25nw(尤其腕式4个激光管照射治疗,照射桡动脉及内关穴,治疗效果更显著)
使用时间:
在治疗过程中,治疗时间长短可根据病程的的长短。病因的不同及体质的差异,在治疗时间上应做相应的调整。手腕照射30分钟,每天桡动脉照射一次,15天为一疗程。如病程较长或病情较重者可逐渐增加治疗时间40-90分钟。
低强度激光引起的生物效应从第3天逐渐增强到10-15天达到最大值!坚持每天早晚使用效果最佳.
激光冷却
激光冷却(laser cooling)利用激光和原子的相互作用减速原子运动以获得超低温原子的高新技术。这一重要技术早期的主要目的是为了精确测量各种原子参数,用于高分辨率激光光谱和超高精度的量子频标(原子钟),后来却成为实现原子玻色-爱因斯坦凝聚的关键实验方法。虽然早在20世纪初人们就注意到光对原子有辐射压力作用,只是在激光器发明之后,才发展了利用光压改变原子速度的技术。人们发现,当原子在频率略低于原子跃迁能级差且相向传播的一对激光束中运动时,由于多普勒效应,原子倾向于吸收与原子运动方向相反的光子,而对与其相同方向行进的光子吸收几率较小;吸收后的光子将各向同性地自发辐射。平均地看来,两束激光的净作用是产生一个与原子运动方向相反的阻尼力,从而使原子的运动减缓(即冷却下来)。1985年国国家标准与技术研究院的菲利浦斯(willam D.Phillips)和斯坦福大学的朱棣文(Steven Chu)首先实现了激光冷却原子的实验,并得到了极低温度(24μK)的钠原子气体。他们进一步用三维激光束形成磁光讲将原子囚禁在一个空间的小区域中加以冷却,获得了更低温度的“光学粘胶”。之后,许多激光冷却的新方法不断涌现,其中较著名的有“速度选择相干布居囚禁”和“拉曼冷却”,前者由法国巴黎高等师范学院的柯亨-达诺基(Claud Cohen-Tannodji)提出,后者由朱棣文提出,他们利用这种技术分别获得了低于光子反冲极限的极低温度。此后,人们还发展了磁场和激光相结合的一系列冷却技术,其中包括偏振梯度冷却、磁感应冷却等等。朱棣文、柯亨-达诺基和菲利浦斯三人也因此而获得了1997年诺贝尔物理学奖。激光冷却有许多应用,如:原子光学、原子刻蚀、原子钟、光学晶格、光镊子、玻色-爱因斯坦凝聚、原子激光、高分辨率光谱以及光和物质的相互作用的基础研究等等。
激光光谱
激光光谱(laser spectra)以激光为光源的光谱技术。与普通光源相比,激光光源具有单色性好、亮度高、方向性强和相干性强等特点,是用来研究光与物质的相互作用,从而辨认物质及其所在体系的结构、组成、状态及其变化的理想光源。激光的出现使原有的光谱技术在灵敏度和分辨率方面得到很大的改善。由于已能获得强度极高、脉冲宽度极窄的激光,对多光子过程、非线性光化学过程以及分子被激发后的弛豫过程的观察成为可能,并分别发展成为新的光谱技术。激光光谱学已成为与物理学、化学、生物学及材料科学等密切相关的研究领域。
激光传感器
激光传感器(laser transducer)利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光是最准的尺。
激光雷达
激光雷达(laser radar)是指用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。
激光武器
激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的定向能武器。根据作战用途的不同,激光武器可分为战术激光武器和战略激光武器两大类。武器系统主要由激光器和跟踪、瞄准、发射装置等部分组成,目前通常采用的激光器有化学激光器、固体激光器、CO2激光器等。激光武器具有攻击速度快、转向灵活、可实现精确打击、不受电磁干扰等优点,但也存在易受天气和环境影响等弱点。激光武器已有30多年的发展历史,其关键技术也已取得突破,美国、俄罗斯、法国、以色列等国都成功进行了各种激光打靶试验。目前低能激光武器已经投入使用,主要用于干扰和致盲较近距离的光电传感器,以及攻击人眼和一些增强型观测设备;高能激光武器主要采用化学激光器,按照现有的水平,今后5-10年内可望在地面和空中平台上部署使用,用于战术防空、战区反导和反卫星作战等。
激光武器的分类
不同功率密度,不同输出波形,不同波长的激光,在与不同目标材料相互作用时,会产生不同的杀伤破坏效应。用激光作为“死光”武器,不能像在激光加工中那样借助于透镜聚焦,而必须大大提高激光器的输出功率,作战时可根据不同的需要选择适当的激光器。目前,激光器的种类繁多,名称各异,有体积整整占据一幢大楼、功率为上万亿瓦、用于引发核聚变的激光器,也有比人的指甲还小、输出功率仅有几毫瓦、用于光电通信的半导体激光器。按工作介质区分,目前有固体激光器、液体激光器和分子型、离子型、准分子型的气体激光器等。同时,按其发射位置可分为天基、陆基、舰载、车载和机载等类型,按其用途还可分为战术型和战略型两类。
1.战术激光武器
战术激光武器是利用激光作为能量,是像常规武器那样直接杀伤敌方人员、击毁坦克、飞机等,打击距离一般可达20公里。这种武器的主要代表有激光枪和激光炮,它们能够发出很强的激光束来打击敌人。1978年3月,世界上的第一支激光枪在美国诞生。激光枪的样式与普通步枪没有太大区别,主要由四大部分组成:激光器、激励器、击发器和枪托。目前,国外已有一种红宝石袖珍式激光枪,外形和大小与美国的派克钢笔相当。但它能在距人几米之外烧毁衣服、烧穿皮肉,且无声响,在不知不觉中致人死命,并可在一定的距离内,使火药爆炸,使夜视仪、红外或激光测距仪等光电设备失效。还有7种稍大重量与机枪相仿的小巧激光枪,能击穿铜盔,在1500米的距离上烧伤皮肉、致瞎眼睛等。
战术激光武器的"挖眼术"不但能造成飞机失控、机毁人亡,或使炮手丧失战斗能力,而且由于参战士兵不知对方激光武器会在何时何地出现,常常受到沉重的心理压力。因此,激光武器又具有常规武器所不具备的威慑作用。1982年阿马岛战争中,英国在航空母舰和各类护卫舰上就安装有激光致盲武器,曾使阿根廷的多架飞机失控、坠毁或误入英军的射击火网。
2.战略激光武器
战略激光武器可攻击数千公里之外的洲际导弹;可攻击太空中的侦察卫星和通信卫星等。例如,1975年11月,美国的两颗监视导弹发射井的侦察卫星在飞抵西伯利亚上空时,被前苏联的“反卫星”陆基激光武器击中,并变成“瞎子”。因此,高基高能激光武器是夺取宇宙空间优势的理想武器之一,也是军事大国不惜耗费巨资进行激烈争夺的根本原因。据外刊透露,自70年代以来,美俄两国都分别以多种名义进行了数十次反卫星激光武器的试验。
目前,反战略导弹激光武器的研制种类有化学激光器、准分子激光器、自由电子激光器和调射线激光器。例如:自由电子激光器具有输出功率大、光束质量好、转换效率高、可调范围宽等优点。但是,自由电子激光器体积庞大,只适宜安装在地面上,供陆基激光武器使用。作战时,强激光束首先射到处于空间高轨道上的中断反射镜。中断反射镜将激光束反射到处于低轨道的作战反射镜,作战反射镜再使激光束瞄准目标,实施攻击。通过这样的两次反射,设置在地面的自由电子激光武器,就可攻击从世界上任何地方发射的战略导弹。
高基高能激光武器是高能激光武器与航天器相结合的产物。当这种激光器沿着空间轨道游弋时,一旦发现对方目标,即可投入战斗。由于它部署在宇宙空间,居高临下,视野广阔,更是如虎添翼。在实际战斗中,可用它对对方的空中目标实施闪电般的攻击,以摧毁对方的侦察卫星、预警卫星、通信卫星、气象卫星,甚至能将对方的洲际导弹摧毁在助推的上升阶段。
激光玻璃
激光玻璃是一种以玻璃为基质的固体激光材料。它广泛应用于各类型固体激光光器中,并成为高功率和高能量激光器的主要激光材料。
激光玻璃由基质玻璃和激活离子两部分组成。激光玻璃各种物理化学性质主要由基质玻璃决定,而它的光谱性质则主要由激活离子决定。但是基质玻璃与激活离子彼此间互相作用,所以激活离子对激光玻璃的物理化学性质有一定的影响,而基质玻璃对它的光谱性质的影响有时还是相当重要的。
激光历史
1958年,美国科学家肖洛和汤斯发现了一种神奇的现象:当他们将内光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光。他们为此发表了重要论文。
肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功。1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。
1960年7月7日,梅曼宣布世界上第一台激光器由诞生,梅曼的方案是,利用一个高强闪光灯管,来刺激在红宝石色水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。
前苏联科学家H.Γ.巴索夫于1960年发明了半导体激光器。半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成。其特点是:尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。
激光亮度
激光的亮度与阳光之间的比值是百万级的,而且它是人类创造的。
激光的颜色
激光的颜色取决于激光的波长,而波长取决于发出激光的活性物质,即被刺激后能产生激光的那种材料。刺激红宝石就能产生深玫瑰色的激光束,它应用于医学领域,比如用于皮肤病的治疗和外科手术。公认最贵重的气体之一的氩气能够产生蓝绿色的激光束,它有诸多用途,如激光印刷术,在显微眼科手术中也是不可缺少的。半导体产生的激光能发出红外光,因此我们的眼睛看不见,但它的能量恰好能"解读"激光唱片,并能用于光纤通讯。
激光分离技术
激光分离技术主要指激光切割技术和激光打孔技术。激光分离技术是将能量聚焦到微小的空间,可获得105~1015W/cm2极高的辐照功率密度,利用这一高密度的能量进行非接触、高速度、高精度的加工方法。在如此高的光功率密度照射下,几乎可以对任何材料实现激光切割和打孔。激光切割技术是一种摆脱传统的机械切割、热处理切割之类的全新切割法,具有更高的切割精度、更低的粗糙度、更灵活的切割方法和更高的生产效率等特点。激光打孔方法作为在固体材料上加工孔方法之一,已成为一项拥有特定应用的加工技术,主要运用在航空、航天与微电子行业中。
激光去除面部黑痣
激光去黑痣的原理就在于将激光在瞬间爆发出的巨大能量置于色素组织中,把色素打碎并分解,使其可以被巨噬细胞吞并掉,而后会随着淋巴循环系统排出体外,由此达到将色素去去掉的目的。
激光去痣可以适用的痣的类型很多,比如包括上面提到的三种色素痣、太田痣、鲜红斑痣等,疗效都很明显,并且不容易留疤,风险性小。
用二氧化碳激光亦能去黑痣。
是否适合激光技术
提示下情况的患者不适合接受激光治疗:
第一. 眼部活动性炎症及病变;第二. 眼周化脓性病灶;第三. 已确诊的圆锥角膜;第四. 严重干眼症,伴有系统性干燥综合征;第五. 中央角膜厚度低于450μm;第六. 严重的眼附属器病变:眼睑缺损、变形、慢性泪囊炎等;第七. 全身结缔组织病及严重自身免疫性疾病,如系统性红斑狼疮、类风湿性关节炎、多发性硬化。
相对禁忌证
1. 超高度近视伴后巩膜葡萄肿者;2. 初次手术前角膜中央平均曲率低于39D或高于47D应慎重;3. 暗光下瞳孔直径大于7mm;4. 对侧眼为法定盲眼;5. 2年内曾患单纯疱疹性角膜炎;6. 轻度白内障;7. 有视网膜脱离及黄斑出血病史;8. 轻度干眼症;9. 轻度睑裂闭合不全;10. 可疑青光眼患者;11. 月经期及妊娠期;12. 瘢痕体质;13. 糖尿病;14. 感冒发烧等身体不适;15. 癫痫;16. 焦虑症、抑郁症以及对手术期望过高者。
关于“激光”的留言: | 订阅讨论RSS |
目前暂无留言 | |
添加留言 |